
Arizona State University

Estimating Trust Dynamics From Behavioral Data

CISA Student Showcase

- Random Forest models were trained with short and medium timescale trust measures to predict automation usage.
- □ Prediction accuracy guided the optimization of the weight assigned to each component influencing trust.
- The estimated weights were used to study the dynamics of trust under different automation conditions.

Carlos Bustamante Orellana and Yun Kang

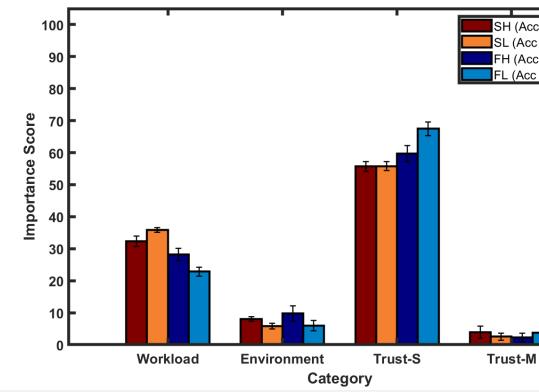


Figure 5. Impact of varied automation conditions on the mean trust dynamics of different performance grou

JSMF

	Conclusions
	 Impact of Trust Measures on Decision-Making Prediction Short timescale trust was found to have a greater impact on decision-making than medium timescale. A linear combination of performance, risk, and reliance provides a robust estimation of trust, leading to highly accurate predictions of decision-making.
	 <u>Trust Dynamics Analysis</u> Operators need ~50 secs to assess the capabilities of the automation and calibrate their trust. High-Performing Operators tend to trust more on automated systems that have fewer degrees of freedom (Speed type). Incorrect trust calibration of the low-performing operators heavily affected their performance.
nescale .	 <u>Future Research</u> 1. Perform more experiments to improve accuracy and study the dynamics of trust more in depth. 2. Development of models for trust and reliance on automation.
	Acknowledgements
	This research was sponsored by the Army Research Office through Cooperative Agreement Number W911NF-18-2- 0271, the Research Assistantship awarded by the School of Human Evolution and Social Change from Arizona State University, and the James S. McDonnell Foundation 21st Century Science Initiative in Studying Complex Systems Scholar Award (UHC Scholar Award 220020472).
	References
1	. Lee, J. D., & Moray, N. (1994). Trust-self-confidence-and-operators- adaptation-to-automation_1994_International-Journal-of-Human- Computer-Studies.pdf. In International Journal of Human-Computer Studies (Vol. 40, Issue 1, pp. 153–184).
g 2.	 Lee, J., & Moray, N. (1992). Trust, control strategies and allocation of function in human-machine systems. Ergonomics, 35(10), 1243–1270. <u>https://doi.org/10.1080/00140139208967392</u>.
3.	. Rodriguez, L., Bustamante, C. E., Chiou, E. K., Huang, L., Cooke, N., & Kang, Y. (2023). A review of mathematical models of human trust in automation. Frontiers in Neuroergonomics, 4.
1	. Gremillion, G. M., Metcalfe, J. S., Marathe, A. R., Paul, V. J., Christensen, J., Drnec, K., Haynes, B., & Atwater, C. (2016). Analysis of