

College of Integrative Sciences and Arts

Effects of Addition of Far-Red Radiation on Plant Growth and Flowering in Strawberries

Introduction

In vertical farms, light quality of sole-source lighting can be optimized to promote crop yield and quality. Addition of farred light (700-800 nm) can promote flowering in some longday plants and induce photomorphogenic effects, including leaf expansion and stem elongation.

Objective

To investigate the effects of addition of far-red light to blue and red lighting on plant growth and flowering in everbearing strawberries

Materials and Methods

Plant Materials:

Strawberry (*Fragaria x ananassa*) 'Albion', 'Monterey', and 'San Andreas'

Growth Conditions:

- Indoor vertical farm
- Deep water culture hydroponic systems
- Air temperature set point: 22°C
- Nutrient solution: Yamazaki formula (N = 77 ppm)

Lighting Treatments:

- Blue+red (B+R) or blue+red+far red (B+R+FR)
- Photoperiod: 18-hour

Table 1. Photon flux density (PFD) of lighting treatments
 delivered from LEDs (B = Blue, R = Red, FR = Far-red).

Lighting	PFD (µmol m ⁻² s ⁻¹)				
treatments	B (400-500 nm)	R (600-700 nm)	FR (700-800 nm)		
B+R	90	250	0		
B+R+FR	90	250	50		

Jonathan Ries and Yujin Park **College of Integrative Sciences and Arts, Arizona State University, Polytechnic**

Materials and Methods

Fig 1. Spectral distribution of blue+red (B+R) (left) or blue+red+farred (B+R+FR) (right) lighting treatment delivered from LEDs.

> Fig 2. Experimental set up for blue+red (B+R) (left) or blue+red+far- red (B+R+FR) (right) lighting treatment delivered from LEDs.

Results

Fig 3. Strawberry plants grown for 5 weeks under blue+red (B+R) or blue+red+far-red (B+R+FR) lighting treatment.

NS, Nonsignificant at *P* < 0.05

Results

Table 2. Growth characteristics of strawberry plants grown for 5

 weeks under blue+red (B+R) or blue+red+far-red (B+R+FR) lighting treatment. Data represents the mean of two replications.

Cultivar	Treatment	Leaf	Leaf area	Shoot	Root
		number	(cm²)	FW (g)	FW (g)
Albion	B+R	3.6	237.2	18.2	25.0
	B+R+FR	3.7	242.8	18.7	23.4
Monterey	B+R	3.2	119.3	10.8	14.5
	B+R+FR	4.0	214.5	17.6	23.5
San Andreas	B+R	2.9	163.2	12.3	17.8
	B+R+FR	2.6	120.6	9.2	14.9
Significance		NS	NS	NS	NS

NS, Nonsignificant at *P* < 0.05

Table 3. Days to flower (after transplanting) of strawberry plants grown under blue+red (B+R) or blue+red+far-red (B+R+FR) lighting treatment. Data represents the mean of two replications.

Cultivar	Treatment	Days to flower
Albion	B+R	50
	B+R+FR	51
Monterey	B+R	49
	B+R+FR	49
San Andreas	B+R	53
	B+R+FR	54
Significance		NS

Conclusions

Upon comparison of the two lighting treatments, there was not a significant effect on plant growth or time to flower with the addition of far-red light.

Acknowledgement: The authors thank Tristan Lewis, Tyler Forgacs, Nicklas McClintic, and Zhenling Zhang for experimental assistance and Lassen Canyon Nursery for strawberry plant materials.