

College of Integrative Sciences and Arts

ARIZONA STATE UNIVERSITY

Introduction

- Dark matter remains to be one of the greatest mysteries of the universe
- Dark matter is thought to account for ~85% of the matter of the universe, yet has gone undetected due to its weak interaction with normal matter and no interaction with light
- Many contributions have been made to better understand the fundamental properties dark matter, yet no one has been able to detect it

Evidence for Existence

Since dark matter does not interact with light, the proof of the existence of dark matter comes from indirect observations

Rotational Curves of Spiral Galaxies

- The relation between the velocity of stars in orbit around a galaxy and the distance between the stars and the center is given by the Keplerian curve
- According to this, the velocity of stars should fall at further distances from the center, but that's not what is found from observations (Sofue & Rubin, 2019)

Fig 1: Predicted vs Observed Graphs of **Rotational Spiral** Galaxies

- The amount of luminous matter present is not enough for the stars near the edge to be moving at these high speeds (Bahcall, 2015)
- There must be other mass present, pointing to the possible existence of dark matter (Bahcall, 2015)

Gravitational Lensing

- Gravitational lensing describes the phenomenon in which large amounts of matter creates a gravitational field that distorts and magnifies light coming from distant galaxies (Massey et al., 2010)
- Gravitational lensing provides information in the foreground based on its effects on the background galaxies (Massey et al., 2010)
- The amount of distortion of light provides strong evidence for the existence of vast amounts of dark matter within and in between galaxies (Bahcall, 2015)

Fig 2: Gravitational Lensing Diagram

The Dark Mystery of the Universe

Srinidhi Budhiraju

Applied Physics and Computer Science

Cosmic Microwave Background Radiation

- The cosmic microwave background radiation shows what the universe looked like before galaxies and clusters were formed (Jones & Lasenby, 1998)
- Ordinary matter interacts strongly with radiation while dark matter does not
- Ordinary and dark matter perturbations leave different imprints on the CMB, again pointing to the existence of dark matter (Bahcall, 2015)

Fig 3: Cosmic Microwave Background **Radiation Diagram**

Current Experiment Methods

- Although the existence of dark matter is widely accepted by physicists around the world, the form and properties of dark matter have not yet been determined
- There are three ways in which physicist attempt to detect dark matter

Make Dark Matter in Accelerators

- One methods of searching for dark matter is to generate them by smashing protons together at nearly the speed of light (Chodos, 2004)
- Violent head-on collisions convert energy into showers of exotic particles scattering in all directions (Lowette, 2016)
- The hope is that within this debris, a short-lived dark matter particle will blink into existence (Lowette, 2016)
- This is not something new. The same method was used over a decade ago to discover the Higgs boson
- It is being used again by the European Organization for Nuclear Research, or CERN to discover the existence of dark matter

Indirect Detection of Dark Matter

- This method of searching for dark matter focuses on looking for the products of dark matter interactions rather than the particle themselves (Leane, 2020)
- In general, one looks for gamma-rays, cosmic-rays, or neutrinos
- For example, although dark matter may not interact with light, the debris from two colliding dark matter particles may produce things such as gamma-rays, which are detectable (Leane, 2020)
- Some instruments that have been used to detect dark matter indirectly include H.E.S.S., VERITAS, and MAGIC

Fig 4: H.E.S.S. Telescope

- 10.1146/annurev.astro.39.1.137
- Jones, A. W., & Lasenby, A. N. (1998). The cosmic microwave background. Living Rev. Relativ. 1, 11; DOI: 10.12942/Irr-1998-11
- Lowette, S. (2016). Accelerator searches for new physics in the context of dark matter. J. Phys.: Conf. Ser. **718**, 022011; DOI: 10.1088/1742-6596/718/2/022011
- Leane, R. K. (2020). Indirect detection of dark matter in the galaxy. arXiv:2006.00513; DOI: 10.48550/arXiv.2006.00513 • Billard, J., Boulay, M., Cebrián, S., Covi, L., Fiorillo, G., Green, A., Kopp, J., Majorovits, B., Palladino, K., Petricca, F., Roszkowski, L., & Schumann, M. (2022). Direct detection of dark matter -- APPEC committee report. Rep. Prog. Phys. 85, 056201; DOI: 10.1088/1361-6633/ac5754

Direct Detection of Dark Matter

- Direct detection of dark matter attempts to directly measure dark matter collisions on Earth (Billard et al., 2021)
- A big problem is that the surface of the Earth is bombarded by cosmic rays, which create too much noise to be able to use direct detection
- Therefore, detectors designed to directly detect dark matter are placed far underground and inside mountains, where there is barely any noise (Billard et al., 2021)
- One example of an experiment using direct detection is XENON in Italy at the Gran Sasso Laboratory
- It is the brainchild of physicist Elena Aprile at Columbia University
- The experiment uses an instrument called the dual-phase, xenon-based timeprojection chamber
- The very first iteration of the XENON series was XENON10 in 2007 Competing experiments include LUX, ZEPLIN, and PANDAX

Fig 5: Dual-Phase, Xenon-Based Time-**Projection Chamber**

Results and Conclusion

- There is a great amount of indirect evidence pointing to the existence of dark matter
- No experiment has been successful in uncovering the mystery of dark matter
- Physicists continue to develop better experiments in order to finally detect dark matter
- Understanding the properties of dark matter is important because it is thought to have played a fundamental role in the formation of galaxies and can be the answer to many observations

Results and Conclusion

- Bahcall, N. A. (2015). Dark matter universe, PNAS **112**, 12243; DOI: 10.1073/pnas.1516944112 • Sofue, Y., & Rubin, V. (2019). Rotation curves of spiral galaxies. Annu. Rev. Astron. Astrophys. 39, 137; DOI:
- Massey, R., Kitching, T., & Richard, J. (2010). The dark matter of gravitational lensing. Rep. Prog. Phys. 73, 086901; DOI: 10.1088/0034-4885/73/8/086901
- Chodos, A. (2004). Next-generation accelerators could hold key to dark matter, energy. APS News 13, 7; https://www.aps.org/publications/apsnews/200407/accelerators.cfm